Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ecol ; 109(2): 900-912, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34158675

RESUMO

The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non-native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non-native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1-m2 plots.Native perennial and non-native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non-native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales.

2.
New Phytol ; 231(1): 460-474, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794003

RESUMO

Host-specialized pathogens are credited with the maintenance of tropical forest diversity under the Janzen-Connell hypothesis. Yet, in diverse forests, selection may favor pathogens with broad host ranges, given their passive dispersal and the relative rarity of tree species. We surveyed the host associations of potential pathogens isolated from symptomatic seedlings in forests in Panama and used inoculations to assess the pathogenicity and host ranges of 27 fungal isolates, and differences among tree species in susceptibility. Thirty-one of the 33 nonsingleton operational taxonomic units (OTUs) isolated from seedlings are multi-host. All 31 multi-host OTUs exhibit low to moderate specialization, and we observed phylogenetically overdispersed host use for 19 OTUs. The pathogenicity of 10 isolates was experimentally confirmed; nine caused disease in seedlings in multiple families. However, the outcome of infection differs among tree species susceptible to a given multi-host pathogen. Furthermore, some tree species were seemingly resistant to all fungi tested, while others were susceptible to multiple fungi. Tree species adapted to environments with lower disease pressure were most likely to exhibit disease. Our results suggest that generalist pathogens contribute to the maintenance of local and regional forest diversity via host-specific impacts and the exclusion of disease-sensitive trees from disease-prone habitats.


Assuntos
Plântula , Árvores , Florestas , Fungos , Panamá , Clima Tropical
3.
Fungal Ecol ; 482020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33408755

RESUMO

The role of infectious disease in regulating host populations is increasingly recognized, but how environmental conditions affect pathogen communities and infection levels remains poorly understood. Over 3 y, we compared foliar disease burden, fungal pathogen community composition, and foliar chemistry in the perennial bunchgrass Stipa pulchra occurring in adjacent serpentine and nonserpentine grassland habitats with distinct soil types and plant communities. We found that serpentine and nonserpentine S. pulchra experienced consistent, low disease pressure associated with distinct fungal pathogen communities with high interannual species turnover. Additionally, plant chemistry differed with habitat type. The results indicate that this species experiences minimal foliar disease associated with diverse fungal communities that are structured across landscapes by spatially and temporally variable conditions. Distinct fungal communities associated with different growing conditions may shield S. pulchra from large disease outbreaks, contributing to the low disease burden observed on this and other Mediterranean grassland species.

4.
Am Nat ; 193(2): 213-226, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30720356

RESUMO

Niche and fitness differences control the outcome of competition, but determining their relative importance in invaded communities-which may be far from equilibrium-remains a pressing concern. Moreover, it is unclear whether classic approaches for studying competition, which were developed predominantly for pairs of interacting species, will fully capture dynamics in complex species assemblages. We parameterized a population-dynamic model using competition experiments of two native and three exotic species from a grassland community. We found evidence for minimal fitness differences or niche differences between the native species, leading to slow replacement dynamics and priority effects, but large fitness advantages allowed exotics to unconditionally invade natives. Priority effects driven by strong interspecific competition between exotic species drove single-species dominance by one of two exotic species in 80% of model outcomes, while a complex mixture of nonhierarchical competition and coexistence between native and exotic species occurred in the remaining 20%. Fungal infection, a commonly hypothesized coexistence mechanism, had weak fitness effects and is unlikely to substantially affect coexistence. In contrast to previous work on pairwise outcomes in largely native-dominated communities, our work supports a role for nearly neutral dynamics and priority effects as drivers of species composition in invaded communities.


Assuntos
Pradaria , Espécies Introduzidas , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia
5.
Ecology ; 99(10): 2250-2259, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179251

RESUMO

Pathogen infection is common in wild plants and animals, and may regulate their populations. If pathogens have narrow host ranges and increase with the density of their favored hosts, they may promote host species diversity by suppressing common species to the benefit of rare species. Yet, because many pathogens infect multiple co-occurring hosts, they may not strongly respond to the relative abundance of a single host species. Are natural communities dominated by specialized pathogens that respond to the relative abundance of a specific host or by pathogens with broad host ranges and limited responses to the relative abundance of single host? The answer determines the potential for pathogens to promote host coexistence, as often hypothesized, or to have negligible or even negative effects on host coexistence. We lack a systematic understanding of the impacts, identities, and host ranges of pathogens in natural communities. Here we characterize a community of foliar fungal pathogens and evaluate their host specificity and fitness impacts in a California grassland community of native and exotic species. We found that most of the commonly isolated fungal pathogens were multi-host, with intermediate to low specialization. The amount of pathogen damage each host experienced was independent of host species local relative abundance. Despite pathogen sharing among the host species, fungal communities slightly differed in composition across host species. Plants with high pathogen damage tended to have lower seed production but the relationship was weak, suggesting limited fitness impacts. Moreover, seed production was not dependent on the local relative abundance of each plant species, suggesting that stabilizing coexistence mechanisms may operate at larger spatial scales in this community. Because foliar pathogens in this grassland community are multi-host and have small fitness impacts, they are unlikely to promote negative frequency dependence or plant species coexistence in this system. Still, given that pathogen community composition differentiates across host species, some more subtle feedbacks between host relative abundance and pathogen community composition, damage, and fitness impacts are possible, which could, in turn, promote either coexistence or competitive exclusion.


Assuntos
Pradaria , Plantas/microbiologia , Animais , California , Fungos , Especificidade de Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...